期權定價模型
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。期權定價模型認為,只有股價的當前值與未來的預測有關;變量過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
期權定價模型基于對沖證券組合的思想。投資者可建立期權與其標的股票的組合來保證確定報酬。在均衡時,此確定報酬必須得到無風險利率。期權的這一定價思想與無套利定價的思想是一致的。所謂無套利定價就是說任何零投入的投資只能得到零回報,任何非零投入的投資,只能得到與該項投資的風險所對應的平均回報,而不能獲得超額回報(超過與風險相當的報酬的利潤)。從Black-Scholes期權定價模型的推導中,不難看出期權定價本質上就是無套利定價。
期權是購買方支付一定的期權費后所獲得的在將來允許的時間買或賣一定數量的基礎商品(underlying assets)的選擇權。期權價格是期權合約中唯一隨市場供求變化而改變的變量,它的高低直接影響到買賣雙方的盈虧狀況,是期權交易的核心問題。早在1900年法國金融專家勞雷斯·巴舍利耶就發表了第一篇關于期權定價的文章。此后,各種經驗公式或計量定價模型紛紛面世,但因種種局限難于得到普遍認同。70年代以來,伴隨著期權市場的迅速發展,期權定價理論的研究取得了突破性進展。
在國際衍生金融市場的形成發展過程中,期權的合理定價是困擾投資者的一大難題。隨著計算機、先進通訊技術的應用,復雜期權定價公式的運用成為可能。在過去的20年中,投資者通過運用布萊克——斯克爾斯期權定價模型,將這一抽象的數字公式轉變成了大量的財富。
期權定價是所有金融應用領域數學上最復雜的問題之一。第一個完整的期權定價模型由Fisher Black和Myron Scholes創立并于1973年公之于世。B—S期權定價模型發表的時間和芝加哥期權交易所正式掛牌交易標準化期權合約幾乎是同時。不久,德克薩斯儀器公司就推出了裝有根據這一模型計算期權價值程序的計算器。大多從事期權交易的經紀人都持有各家公司出品的此類 計算機,利用按照這一模型開發的程序對交易估價。這項工作對金融創新和各種新興金融產品的面世起到了重大的推動作用。
斯克爾斯與他的同事、已故數學家費雪·布萊克(Fischer Black)在70年代初合作研究出了一個期權定價的復雜公式。與此同時,默頓也發現了同樣的公式及許多其它有關期權的有用結論。結果,兩篇論文幾乎同時在不同刊物上發表。所以,布萊克—斯克爾斯定價模型亦可稱為布萊克—斯克爾斯—默頓定價模型。默頓擴展了原模型的內涵,使之同樣運用于許多其它形式的金融交易。瑞士皇家科學協會(The Royal Swedish Academyof Sciencese)贊譽他們在期權定價方面的研究成果是今后25年經濟科學中的最杰出貢獻。
1979年,科克斯(Cox)、羅斯(Ross)和盧賓斯坦(Rubinsetein)的論文《期權定價:一種簡化方法》提出了二項式模型(Binomial Model),該模型建立了期權定價數值法的基礎,解決了美式期權定價的問題。